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ABSTRACT
The ubiquity and variety of available sensors has enabled the collec-
tion of voluminous datasets of car trajectories that enable analysts
to make sense of driving patterns and behaviors. One approach to
obtain driving behaviors is to break a trajectory into its underlying
patterns and then analyze these patterns (aka segmentation). To val-
idate and improve automated trajectory segmentation algorithms,
there is a crucial need for a ground-truth against which to compare
the results of the algorithms. To the best of our knowledge, no such
publicly available ground-truth of car trajectory annotations exists.
In this paper, we introduce a trajectory annotation framework and
use it to annotate a real-world dataset of personal car trajectories.
Our annotation methodology consists of a crowd-sourcing step fol-
lowed by a precise process of expert aggregation. Our annotation
identi!es segment borders, and then labels the segment with its type
(e.g. speed-up, turn,merge, etc.). The output of our project is a dataset
of annotated car trajectories (DACT), and is publicly available for use
by the spatiotemporal research community at https://goo.gl/XgsxyJ.
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1 INTRODUCTION
The ubiquity of a variety of sensors (accelerometer, barometer, GPS,
etc.) has enabled the collection of voluminous datasets of car trajecto-
ries. Examples of such datasets are the New York Taxicab dataset [1],
the Porto Taxicab dataset [13], and GeoLife [19]. Such datasets en-
able analysts to extract insights on driving patterns and behaviors.
This has many applications in urban management such as city traf-
!c planning and improving driver safety by reducing the risk of
accidents.

Each trajectory in a dataset of car trajectories is a time-stamped
sequence of data points described using attributes such as speed,
bearing and location. To understand driving behaviors, one approach
is to break each trajectory into its underlying patterns, or segments
(Figure 1), and then describing the trajectory in terms of the patterns
exhibited in these segments [2, 3, 6]. For example, our work in [12]
describes a statistical modeling approach to transform a trajectory
into a signal and then applying a dynamic programming-based seg-
mentation algorithm to identify the most interesting segments using
Minimum Description Length (MDL).
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Figure 1: A sample trajectory with several underlying driving

patterns speci!ed by ovals. Red arrows show the points of

transition between patterns, where new patterns commence.

One of the main shortcomings of all the aforementioned ap-
proaches is the lack of real-world experimental studies. The applica-
bility and performance is often validated just through few realistic
use cases. There should be a set of labeled trajectories as ground-truth
in which the true segment borders are speci!ed by domain experts.
To the best of our knowledge, there is no such dataset publicly avail-
able for the research community. In this paper, we describe and
provide a link to such a dataset. We also present methodology for
trajectory annotation comprising two main steps, Expert Annotation
and Annotation Aggregation.

Contributions. We propose a simple yet e"ective two-step ap-
proach for annotating car trajectories. We apply our approach on a
real-world car trajectory dataset and discuss the pains and gains of
the process. Last we make the resulting annotation dataset publicly
available for spatiotemporal research community.

Outline. First, we review related work in Section 2. Then, we in-
troduce our trajectory annotation framework in Section 3. Next we
discuss results of annotating a real-world dataset in Section 4. We
introduce the resulting dataset of trajectory annotations in Section 5.
Last, we conclude in Section 6.

2 RELATEDWORK
This work is an example of spatiotemporal crowdsourcing task as
studied before in [8, 15, 16]. The major di"erence between our pro-
posed annotation framework and other existing approaches is two-
fold. First, we recognize that trajectory annotation is highly subjec-
tive. While there is close consensus when Human Intelligence Tasks
(HIT) are used to identify static attributes of a trajectory notions, e.g.,
“where a street begins”, or “where a tra#c light is situated”, there
is considerable disagreement when labelling driving patterns with
behavioral labels such as “slow-down” or “jiggling1”. Generally, it is
hard for humans to achieve consensus on “where (in a trajectory)
a change in driving behavior occurs”. Second, our aim is not to just
identify how humans think about trajectories, but to come up with
gold standard annotations that can be used to validate results of un-
supervised and semi-supervised trajectory segmentation algorithms

1Continuously going to left and right while driving.



(e.g., [2–4, 6, 14]). The speci!c task of annotation of trajectories
(which we formulate in this paper) is also related to prior e"orts on
specifying stop and move episodes in trajectories [9, 18]. However,
the task of annotation of trajectories is rather more challenging. For
instance in our case, each “move” episode may be further annotated
by several patterns.

3 ANNOTATION FRAMEWORK
A trajectory Ti in a database of car trajectories T = {T1,T2, . . . ,TN }
consists of a sequence of data points 〈pi1,pi2, . . . ,pin〉. Each data
point pi j is a tuple of the form (Timej , Speed j ,Headingj , Lat j , Lngj )

where Timej is the timestamp, Speed j is the vehicle’s speed (mph),

Headingj is the direction change based on the previous direction,

and Lat j and Lngj are the exact location of the vehicle. Segmentation

of a trajectory Ti intom segments is the process of discovering a
set of cutting indexes 〈Ii1, Ii2 . . . , Iim〉 which mark the end points2

of Ti ’s non-overlapping segments. Note that Iim corresponds to the
index of the last point of trajectory Ti (i.e., TIim = Tn ).

The annotation of a trajectory Ti is the task of identifying seg-
ment borders (i.e., cutting indexes) within Ti using human expertise.
An expert may assign one or more labels to each segment, where
examples of labels are speed-up, slow-down, turn, etc. As noted be-
fore, our methodology for trajectory annotation contains two steps,
Expert Annotation, and Annotation Aggregation. The former refers
to a crowdsourcing-style process of assigning trajectories to experts
for annotation. The latter is a !nalization step which aggregates
received annotations of human experts to land on a consensus.

3.1 Expert Annotation
In this step, a human expert u annotatesm segments for a trajectory
Ti . We assign each trajectory Ti to at least two experts. We prepare
a web interface for experts to provide a bird’s-eye view on the data
under investigation. The trajectoryTi is displayed on a geographical
map and can be zoomed-in to see the street view, which enables
a more precise annotation. Speed and heading-change pro!les are
illustrated in form of interactive time-series, where hovering on a
data point in one of the time-series, will highlight the same point in
all other visualizations (that is, the views are coordinated).

For privacy reasons, we randomly hide some points in Ti so that
the characteristics of the driver, car and other entities are not identi-
!able. For instance, we remove points in the !rst and last 5 minutes
of the trajectory to hide the exact addresses of departure and desti-
nation.

During the annotation process, an expert u follows data points in
Ti in any of the provided visualizations. When a change is observed
at a point pi j , u may decide to declare the end of a segment by
clicking pi j . She then may also specify the type of the segment, from
the ones listed in Figure 3.

3.2 Annotation Aggregation
High subjectivity in trajectory annotation by humans necessities
an aggregation phase. In this step, a human expert e decides to
accept, reject or re!ne each provided annotation for a trajectory Ti
in order to !nalize the annotation process. A decision is made based
on some guidelines and a heuristic baseline. To deal with strong
disagreements among annotators, we perform the aggregation in
two di"erent modes, Strict and Easy, each of which delivers a distinct
set of guidelines.

Strict Aggregation. In the strict mode, our focus is to maximize the
usability of all experts’ annotations. Di"erent experts may identify
di"erent segments in a trajectory. In this mode, all the segments
are identi!ed as such, whether they are independent (e.g., an entire
loop as in Figure 3) or dependent (i.e., segments which occur inside a
bigger segment – being part of another segment, e.g., a slow-down
inside a loop, as in Figure 2).

2An end point is also called a cutting point as represented in Figure 1.

Based on some initial trial-and-error experiments, we identi!ed
certain thresholds as follows. The expert e considers any change
in the speed larger than 5mph as a signi!cant change and marks
the segment as either a speed-up or slow-down. Also, a continuous
change in heading values for !ve consecutive seconds counts as a
signi!cant change in heading and identi!es a segment as smooth-
turn or jiggling. Observing such continuous period ensures that we
do not end up with GPS false positives.

Easy Aggregation. In contrast to the strict mode, easy aggregation
only identi!es independent segments. Also we use larger thresh-
olds for segments. For speed, a change must be by at least 10mph to
count it as a signi!cant change. For heading, a consecutive series
of changes in 10 seconds counts as a segment. Obviously, less seg-
ments will be marked in the Easy aggregation comparing to Strict
aggregation. Figure 2 provides examples to contrast between easy
and strict aggregations.

As a help during decision-making process, the aggregating ex-
pert e also has access to the output of a heuristic baseline as a sec-
ondary source of information. We build an unsupervised algorithm
called AutoAnn (Automatic Annotation) which uses heuristics on
speed, heading, and position derived from a pilot study3 in order
to mark segments. By being provided alongside expert annotations,
AutoAnn enables experts in the aggregation phase to get to a con-
sensus.We stress that the employed heuristics are very simplistic and
cannot replace the human power of decision making. In other words,
AutoAnn is only provided as a help to the aggregating expert.

AutoAnn scans each single data point in Ti (in the ascending
order of timestamps) and makes comparisons with k neighbor points
(experimentally, k is set to 5). A few of the heuristics of AutoAnn is
described as follows (see [10] for more details.)

H1. Speed-wise, if a data point p falls into a local maxima among
it’s k neighbors (i.e., k previous and k subsequent points), then p
marks the end of a speed-up segment. Similarly, if p falls into a local
minimum, p marks the end of a slow-down segment.

H2. If a data point p holds as the end of a slow-down segment and
the speed at p is lower than a low-speed threshold (experimentally
set to 9mph), then p marks the end of a tra"c-jam segment. The
intuition is that a serious slow-down should be due to a tra#c jam.

H3. If the position of a point p is merely identical with the point
p′ which occurred before p, then p′ marks the beginning and p
marks the end of a loop segment. The intuition is that when a driver
performs a loop (for instance through a highway exit as in the top-
right plot in Figure 3), the !rst and last locations of the loop are
identical with a tiny error.

H4. Consider the function d() that returns the !rst-order derivative
of heading values. Given points p and p′ where p′ occurs right
after p, the point p marks the end of a turn segment i" it satis!es
two following conditions: !rst, the function d() returns 0 for all
k neighbors of p, second, d(p) is larger than a heading threshold
(experimentally set to 15).

4 ANNOTATION RESULTS
We apply our annotation framework on a real-world dataset of per-
sonal car trajectories4, collected using highly accurate devices con-
nected to On Board Diagnostic (OBD-II) port of vehicles. Note that
the data has been collected with a consistent sampling rate of one
second, whereas most of the existing public datasets use samples
collected at lower rates [1, 13, 19].

A data cleaning phase removes redundant or highly similar trajec-
tories in terms of tra#c condition or metropolitan coverage (hence
increasing diversity). Table 1 summarizes the !nal dataset.AutoAnn
generates 2418 segments on this data, among which 59% are slow-
downs and 20% are tra#c-lights.

3Prior to the annotation process, we ran a pilot phase to identify challenges and properties
of the task.
4This dataset is provided by Nationwide Mutual Insurance Company.



(a) Strict Aggregation (b) Easy Aggregation

Figure 2:Di"erence between strict (a) and easy (b) aggregation: In the !rst case, we consider both independent and dependent segments, while, for

the second one, we just consider the independent segments. Examples of independent segments are S1 and S3 in (a) and an example of dependent

segment is S2 in (a).
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Figure 3: Segment types derived from real data. For the last

row, the feature which is used to demonstrate the pattern is

shown within parenthesis.

Table 1: Trajectory Dataset to be used for Annotation.

Number of

Trajectories

Number of

Drivers

Total

Driving Time

Average

Trajectory Duration

50 19 13.3 hours 16 minutes

We next present our observations on annotating the dataset of
car trajectories. First, we present time costs, then analyze inter-expert
agreements, and !nally we discuss the distribution of annotations.

Time Cost. Table 2 presents selected statistics from annotation and
aggregation phases. We observe that the most time-consuming phase
is the strict aggregation where the number of extracted segments
is also the largest. Moreover, the annotator experts and the strict-
aggregation expert spent almost the same amount of time to annotate
a new segment (i.e., 31 seconds). Of course, more segments are
generated by the aggregator, which justi!es the work of aggregator.

Inter-Expert Agreement. Given two annotator experts u1 and
u2 for a trajectory T , their set of annotated points is denoted as
ann(u1,T ) and ann(u2,T ). We measure the correlation between an-
notation sets using Jaccard and Cohen’s Kappa [7] metrics, de!ned
as follows.

Jaccard = a
a+b+c

, κ =
( a+d

a+b+c+d
)−ω

1−ω

Here, a = |ann(u1,T ) ∩ ann(u2,T )|, b = |ann(u1,T ) − ann(u2,T )|,
c = |ann(u2,T ) − ann(u1,T )|, d = |T − (ann(u1,T ) ∪ ann(u2,T ))| and
ω = ((a + b)(a + c) + (c + d)(b + d))/(a + b + c + d)2. Annotation
points should not exactly be in the same location to be counted in the
variable a. Given a distance approximation threshold τ , two points
p1 ∈ ann(u1,T ) and p2 ∈ ann(u2,T ) are involved in the intersection
of annotation sets, i" Haversine(p1,p2) ≤ τ . Haversine function

is a distance metric in spherical space which serves latitudes and
longitudes [17].

Figures 4a and 4b show the analysis of inter-expert agreement
based on Cohen’s Kappa and Jaccard, respectively, by varying the
distance threshold τ . Note that for aggregation phases, the agree-
ment analysis is done by comparing the annotations produced by
“aggergator” with those generated by the “annotators”. Note that the
largest agreements are for easy-aggregation. Also, strict-aggregation
has a larger agreement than expert-annotation. We summarize few
other insights on agreements as follows.

• On Subjectivity. We observe that the disagreement between di"er-
ent annotators was large, even with a loose distance threshold of
200 meters. Clearly, trajectory annotation is subjective!

• On Aggregation. Figures 4a and 4b illustrate that the aggregator
considers the set of annotations of annotator experts in both strict
and easy aggregations, and this process boosts the agreement from
44% to about 60% (using Cohen’s Kappa metric). In other words,
the aggregation reduces disagreements drastically and tackles the
subjective nature of the task.

• Annotation vs. Easy-Aggregation. We observe that there is a larger
agreement between results of easy-aggregation and expert-annotation
phases. This is due to exploiting relaxed versions of constraints
during the easy-aggregation as opposed to strict-aggregation.

• Larger Agreements by Cohen’s Kappa. We also observe that Co-
hen’s Kappa tends to return larger agreement values. This is due
to the consideration of non-annotated points as well as annotated
ones. On the contrary, Jaccard uses only the annotated points.

Distribution of Annotation Types. Figure 5 shows the frequency
of segment types in the di"erent phases of annotation. We observe
that the most common segment types are speed-up, slow-down, and
smooth-turn which cover 70% of strict aggregations, 66% of easy
aggregations and 55% of annotations. Interestingly, we also observe
a parity in the frequency of correlated segments, such as exit with
merge, left-turn with right-turn, and speed-up with slow-down.

5 DACT: ANNOTATION DATASET
We brie*y present the outcome of this study, i.e., a dataset of an-
notated car trajectories called DACT. The dataset functions as a
ground-truth for car trajectory segmentation. DACT’s concept is
akin to Cinematch on Net*ix data as a ground-truth for movie rec-
ommendation (and employed in the KDD Cup [5]). DACT contains
a collection of trajectories of time-ordered tuples, and provides the
following attributes for each tuple.

TID: Unique identi!er of the trajectory.

TimeStep: A positive integer standing for the index of the current
tuple in the sequence of tuples in the trajectory TID.

TimeStamp: The time of the current tuple, reported in Eastern Day-
light Time (EDT).

Speed: The vehicle’s speed at the tuple’s timestamp, reported in miles
per hour (mph).



(a) Cohen’s Kappa (b) Jaccard

Figure 4: Inter-Expert Agreement based on (a) Cohen’s Kappa and (b)

Jaccard.
Figure 5: The frequency distribution of segment

types as result of di"erent annotation phases.

Table 2: Annotation Facts Based on Di"erent Phases.

Annotation Phase
Num of Segments

Speci!ed By Expert(s)

Avg Num of Segments

per Trajectory

Total Active

Annotation Time

Avg Annotation Time

per Trajectory

Avg Time to Specify

a Single Segment

Expert Annotation 1,997 20 17 hours 10.3 minutes 31 seconds

Strict Aggregation 2,465 49 21 hours 25.2 minutes 31 seconds

Easy Aggregation 1,372 27 6.3 hours 7.5 minutes 15 seconds

Acceleration: The vehicle’s acceleration at the tuple’s timestamp
reported in meter per second squared (m/s2).

Heading: The vehicle’s direction of moving at the tuple’s timestamp,
reported in a range [0, 359], where 0 signi!es north and 180, south.

HeadingChange: The vehicle’s change of heading in comparison with
the observed heading in the previous timestep. By de!nition, the
HeadingChange of the !rst timestep is 0.

Latitude and Longitude: The GPS coordinates of the vehicle’s location
at the tuple’s timestamp.

Annotation: The list of annotations for the tuple (if any). If there is
no annotation speci!ed for the tuple, this attribute is set to NULL.

SegmentType: The type(s) of segment for the tuple (if any). The
possible values for this attribute are shown in Figure 3. If there is no
segment type speci!ed for the tuple, this attribute is set to NULL.

DACT is organized in two CSV !les, one for strict-aggregation and
the other for easy-aggregation. Columns of the CSV !les correspond
to the above attributes. DACT is publicly available under the Creative
Common license, at the following link: https://goo.gl/XgsxyJ.

5.1 DACT in Practice
DACT is already in use within our research group. In [11], DACT
was employed to compare di"erent trajectory segmentation method-
ologies by performing prediction and sensitivity experiments. There
we showed that for the same recall value, how the proposed solu-
tion outperformed other baselines (e.g., [2]) by reasonable margin
on precision value. Note that without using DACT, there was no
other way to quantitatively show the applicability of our proposed
segmentation approach in compare to the state-of-the-art solutions.

6 CONCLUSION
In this paper, we introduce a trajectory annotation framework in
order to formalize the subjective task of annotating personal car
trajectories. In our annotation framework, we address “subjectivity”
in decisions, which is the main driver of the task’s complexity. For
that, we designed a two-step approach where an aggregation phase
follows the annotation phase to reduce disagreements between anno-
tators.We also considered an automatic annotator (AutoAnn) which
provides baselines to the expert for a better decision making. We il-
lustrated in experiments that our framework boosts inter-annotator
agreement from 44% to about 60% (upon Cohen’s Kappa metric).
We have made the outcome of this research (i.e., the unique dataset

of annotated trajectories) publicly available for the spatiotemporal
research community.
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